
1 2

3 4

PROBLEM: 
- Global teams making 1000’s of commits in large codebases

- Changes may introduce regression errors

- Small changes – big impact

OUR APPROACH: 
Regression Verification

Prove that Commit 3271602 behaves equivalently to previous Commit fd1adf4

…by proving the changes Contextually Equivalent*
*in cases of the new commit is adding good/removing bad behaviour: contextual refinement

M ≡N if they are interchangeable in all program contexts C

Proposed Approach: Regression verification

Lero@TCD is leading research and creating state-of-the-art technology in 
regression verification

RESULTS TO DATE:

Hobbit – (H)igher-(O)rder (Bi)simulation (T)ool
[github.com/LaifsV1/Hobbit]
- State-of-the-art verification tool for Contextual Equivalence for programs 

such as those written in OCaml, Python, Java, Lisp, …
- Guaranteed to find all bugs (inequivalences) that are not due to infinite loops

− More equivalences verified than ever before
− Novel techniques speed up verification by 400x.

pcfeq – Equivalence Verification tool for functional (PCFv) programs
[github.com/LaifsV1/pcfeq]

- a breakthrough model of functional programs considered impossible before
- State-of-the-art verification tool for Contextual Equivalence for programs 

such as those written in Haskell
- Distinguished paper @LICS, invited for publication @Journal of ACM

FUTURE DIRECTIONS:

- More powerful equivalence verification techniques

- Equivalence verification for concurrent programming languages 

- Integration in software development environments

- Validation in real-world use cases:

Funded project for applying the technology on Blockchain Smart Contracts

- More potential applications in Security, Privacy, protocol verification, compiler 
correctness, testing frameworks…

See details in:

Koutavas, V., Lin, YY., Tzevelekos, N. (2022). 
From Bounded Checking to Verification of Equivalence via Symbolic Up-to Techniques 
In: TACAS 2022 (ETAPS 2022). LNCS, v.13244. Springer.
doi.org/10.1007/978-3-030-99527-0_10 

Software tool: github.com/LaifsV1/Hobbit

2098.5

1622.9

5.6
0

500

1000

1500

2000

None I+R I+R+S

Ti
m

e 
Ta

ke
n 

(s
ec

on
ds

)

Time for 
verifying equivalences

3

32

72

0

21

42

63

84

105

None I+R I+R+S

Coverage for Equivalences 
bound exhausted inequivalent equivalent

515.7

312.8

20

0

100

200

300

400

500

None I+R I+R+S

Time 
for detecting bugs (inequiv.)

Commit fd1adf4

Has the commit 
introduced any bugs?

Has the commit 
changed the program 

behaviour?

Diff

Current practice: Regression testing

✘ Non-exhaustive analysis
✘ High cost to curate test-suite

- Coverage? Maintainability?
✘ Many resources to run tests
✘ Feedback delay to developer; Low fix rate

- Run nightly
✘ Access to entire code

Commit 3271602
git commit

+ peer review, bug-finding tools, etc.

GOOGLE: 

• 2 Billion LOC codebase
• 800K Builds/day
• 150M test runs/day
• 9h delay in test feedback

[Memon et al. ICSE-SEIP’17]

✓ Exhaustive analysis AND use as bug finding tool
✓ Low cost 

- Does not need manual test-suite / formal spec (code is spec)
✓ Low resources

- Does not need full-program test runs / verification
✓ Timely Feedback

- Run at compile time, increasing fix rate
✓ No need for full access to code

≡

if &
only if

M computes nC C computes nN

Software tool: github.com/LaifsV1/pcfeq

Koutavas, V., Lin, YY., Tzevelekos, N. (2023). 
Fully Abstract Normal Form Bisimulation for Call-by-Value PCF.
In: ACM/IEEE LICS 2023, pp. 1-13.
Distinguished paper, invited for publication in JACM.
doi.org/10.1109/LICS56636.2023.10175778

Yu Yang Lin Hou, Vasileios Koutavas, Nikos Tzevelekos

https://doi.org/10.1007/978-3-030-99527-0_10
https://github.com/LaifsV1/Hobbit
https://github.com/LaifsV1/Hobbit
https://doi.org/10.1109/LICS56636.2023.10175778

	Slide 1

